Contents

High-assurance software systems 2
Faculty ... 4
Research .. 7
Publications 10
Grants .. 13
Professional service/recognition 16
Undergraduate studies 18
Graduate studies 19
Advisory board 20
Contact information 21

Message from the Department Head

The Kansas State University Department of Computing and Information Sciences has been in existence for 57 years. From my perspective as department head for the past 27 years, I believe the CIS department is the strongest it has ever been. Our faculty are very productive; our students are in high demand; our outreach programs are strong; and our interdisciplinary teaching and research programs enable a broad spectrum of disciplines.

In research, all tenured or tenure-track faculty have extramural funding (http://www.cis.ksu.edu/research/projects) and contribute to the body of knowledge in computing through publication of their research results. Dr. Robby was awarded an NSF Career Award to support his work, "A Formal, Integrated Analysis Framework for Contract-Based Reasoning of Strong Properties in Open Systems." We have initiated two new research programs in bioinformatics, under the direction of Dr. Carapriz, and computer security, under the direction of Dr. Ou. To further our international collaborative research with industry, Dr. Mituno took a sabbatical with Hitachi in Japan, and Dr. Banerjee took a sabbatical with IBM and Microsoft. Finally, CIS faculty are involved in more than 20 interdisciplinary projects.

Our undergraduate program has been restructured to provide more opportunities and specialization for B.S. candidates. Tracks in computer science, software engineering, and information systems permit specialization in a wide variety of targeted areas such as entertainment software, cybersecurity, database systems, enterprise systems, embedded systems, distributed and parallel systems, data mining, sensor networks, and a wide variety of interdisciplinary areas such as biomedical informatics and health IT.

Our outreach programs now target elementary, middle school, high school, and community college programs. Our industrial outreach programs affect a wide variety of state and national industries in areas such as health IT and avionics.

This 2007 report cannot cover all of the accomplishments of CIS for the year, but our Website at http://www.cis.ksu.edu will give you a more complete picture of our activities.

Virgil E. Wallentine, Ph.D.
Department Head
Computing and Information Sciences
Kansas State University
High-assurance software systems

National and international critical infrastructures, as well as commercial services, increasingly rely on complex distributed systems that share information with "multiple levels of security" (MLS). These systems often seek to coalesce information with mixed security levels into information streams targeted to particular clients. Examples of this include in a national emergency response system, some data will be privileged, e.g., information regarding availability of military assets and deployment orders for those assets, and some data will be public, e.g., weather and mapping information. Similarly, military frameworks such as the Global Information Grid and the Joint Battlespace Infosphere emphasize flexible access to information with multiple levels of security to warfighters across all levels of command and across forces. In the healthcare domain, electronic and integrated health information systems go beyond providing caregivers with information on a current patient to include statistical data on treatments and outcomes for patients with similar clinical profiles and treatment regimes.

In these systems, a huge tension exists between providing aggressive information flow to gain operational and strategic advantage, while preventing leakage to unauthorized parties. Specifying and validating information-flow security policies in this context is challenging. When such systems need to be certified for high levels of assurance, providing formal representations of policies and correctness arguments is exceedingly difficult.

Researchers in the K-State CIS Laboratory for Static Analysis and Transformation of Software (SAToS) are developing innovative static analysis techniques and program logics for attacking such challenges.

- SAToS static analysis techniques automatically scan system source-code programs to generate a conceptual "road map" of how information is flowing through a system implementation. This information is presented to system designers and programmers in integrated development environments that allow them to easily visualize and navigate information flows to guide system design and to facilitate debugging in situations where information flow violates high-level system security policies.

- To aid in the formal capture and verification of information-flow policies, SAToS researchers have developed a novel program logic for specifying policies that describe how information is expected to flow between the inputs and outputs of program components. Proofs in the logic provide guarantees that the system implementation satisfies a specified information-flow policy.

These static analysis methodologies are applied to automatically construct a vast majority of required information-flow proofs. These can be viewed as "certificates" that provide hard evidence of satisfaction of security policies—evidence that can be independently verified by automatic certificate-checking programs.

"One of the things that makes our work unique is that we focus not only on providing hard-core verification and proofs of conformance to stated information-flow policies, we also provide a variety of forms of integrated development and analysis support to help developers manage and automate checking of security policy conformance," said John Hanciff, professor and leader of the SAToS Lab.

"We spend a lot of time thinking about how developers carry out the process of designing and developing a system and how our techniques can be integrated in a non-intrusive manner into the workflows of industrial engineers," he said.

"It's our practical approach to providing high-assurance solutions that makes our work attractive to industry groups and government regulators working in the area of security-critical systems that must be built to provide the highest levels of confidence. Rockwell Collins, a communications and electronics provider headquartered in Cedar Rapids, Iowa, is one of the industrial partners with which SAToS has formed a long-term relationship. The research division of Rockwell Collins, the Advanced Technology Center (ATC), is funding SAToS to develop compositional contract-based approaches for certifying secure information-flow requirements in military information assurance products.

Rockwell Collins ATC engineers, led by Matthew Wilding, have established themselves as industry leaders in the area of certification of systems built according to the "multiple independent levels of security" (MLS) architecture. The MLS program, primarily supported through various U.S. Department of Defense funding agencies, proposes to make development, accreditation, and deployment of MLS-capable systems more practical and affordable by providing a certified infrastructure foundation for systems that require assured information sharing.

MLS systems are developed on top of a separation kernel that isolates and controls communication between application components deployed in different partitions of the kernel. MILS middleware provides various services such as a partitioning communication system which extends the single-node, security-policy enforcement provided by the separation kernel to a distributed environment, and high-assurance network guards that validate that data passing between MILS components is authenticated. The MILS program aims to establish a commercial market for high-assurance, standards-based COTS components that can be assembled to produce accredited systems.

"SAToS researchers have a great reputation for developing powerful formal methods tools that can be applied to real-world problems," Wilding said. "Rockwell Collins ATC has sought out and funded Kansas State as a research partner based on Kansas State's expertise in static analysis that we believe can be applied to automate and scale-up portions of our verification processes."

Rockwell Collins ATC engineer David Greve has played a key role in developing ATC's security verification infrastructure. "We're very happy with the early results we are getting with the Kansas State team," said Greve. "What we are finding is that many elements of our verification framework can be automated using SAToS technology. Over the long term, we believe these techniques are going to lead to a dramatic reduction in effort, decreased time required to certify, and a greater ability to handle more complex systems that are needed in emerging and future applications."

"This is exactly the type of relationship that CIS seeks to foster with companies across our region," said Virgil Wallentine, CIS department head at K-State. "We have several CIS graduates working at Rockwell Collins now, and those alumni have helped facilitate this research partnership and internships that provide experience in exciting and relevant application areas for our graduate students."

"The ongoing research partnership is providing not only financial support for world-class research in our department, it's also infusing our research context with challenging problems and an understanding of what it takes to build real systems with cutting-edge technology. The formal methods and security verification group at Rockwell Collins ATC are truly industry leaders in their area, and we are happy to be working with them."

For more information about the SAToS work on information assurance, see http://sannot.cs.ksu.edu.
Vingil Wallentine

Ph.D., Computer Science, Iowa State University, 1972.
B.S., Computer Science, Iowa State University, 1970.
Research: Parallel scientific simulations, verification of concurrent software, health IT systems.
Teaching: Parallel and distributed systems, impact of computing on society.

Torben Amtoft

Ph.D., Computer Science, University of Aarhus, 1993
M.S.C., Computer Science, University of Copenhagen, 1989
B.S.C., Mathematics and Computer Science, University of Copenhagen, 1985
Research: Program analysis, language-based security, program slicing, information-flow analysis, dependency analysis.
Teaching: Databases, algorithms, logic and verification.

Daniel Andersson

Ph.D., Computer Science, University of California, Santa Barbara, 1997
M.S., Computer Science, California Polytechnic State University, SLO, 1992
B.S., Computer Science and Mathematics, Westmont College, 1990
Research: Parallel and distributed computing, scheduling and run-time systems, high-performance scientific computing, distributed-sensor networks, telemedicine.
Teaching: Operating systems, distributed systems, computer architecture, WWW technology.

Anindya Banerjee

Ph.D., Computing and Information Sciences, Kansas State University, 1995
M.S., Computer and Information Sciences, University of Delaware, 1989
B.C.S.E., Computer Science and Engineering, Jadavpur University, 1987
Research: Logic-based program analysis and verification, programming language-based computer security, modular reasoning and checking of programs, abstract interpretation, concurrency, program transformation, type systems.
Teaching: Programming languages, program analysis, language-based security, logical foundations of computer science.

Doina Caragea

Postdoctoral, Computer Science, Iowa State University, 2004-2006
Ph.D., Computer Science, Iowa State University, 2004
M.S., Computer Science, University of Bucharest, Romania, 1997
B.S., Computer Science, University of Bucharest, Romania, 1996
Research and teaching: Bioinformatics, artificial intelligence, machine learning, data mining and knowledge discovery, visual data mining, ontologies and information integration, information retrieval and semantic web.

Scott A. DeLoach

Ph.D., Computer Engineering, Air Force Institute of Technology, 1996
M.S., Computer Engineering, Air Force Institute of Technology, 1987
B.S., Computer Engineering, Iowa State University, 1982
Research: Applying software engineering methods, techniques, and models to design and development of intelligent, complex, adaptive, and autonomous multiagent systems; building tools and techniques necessary to design and build cooperative robotic systems; building and developing hybrid intelligent systems that include humans, software agents, and mobile hardware agents.
Teaching: Agent-oriented software engineering, software engineering, software management.

David A. Gustafson

Ph.D., Computer Science, University of Wisconsin, 1979
M.S., Computer Science, University of Wisconsin, 1973
B.S., Meteorology, University of Utah, 1969
B.S., Mathematics, University of Minnesota, 1967
Research and teaching: Software engineering, software metrics, software testing, design analysis, robotics, vision, face recognition, emotion recognition, biometrics, healthcare applications of robots.

John Hatcliff

Ph.D., Computer Science, Kansas State University, 1994
M.S., Computer Science, Queen's University, Kingston, Ontario, Canada, 1991
B.A., Computer Science/Mathematics, Mount Vernon Nazarene College, 1988
Research: Formal methods in software engineering, software verification, security analysis and certification, model checking, static analyses of programs, concurrent and distributed systems, middleware, model-integrated computing, semantics of programming languages, compiler construction, logics and type theory.
Teaching: Foundations of programming languages, software specification and verification, logic and set theory, construction of concurrent systems, compiler construction, formal language theory, software engineering, functional programming, logic programming.

Raymond Howell

B.S., Computer Science, Wichita State University, 1984
Ph.D., Computer Science, The University of Texas at Austin, 1988
Research: Real-time scheduling, algorithm analysis, self-stabilizing systems.
Teaching: Analysis of algorithms, data structures, formal language theory, symbolic logic, real-time scheduling theory.

William Hsu

Ph.D., Computer Science, University of Illinois at Urbana-Champaign, 1998
M.S., Computer Science, Johns Hopkins University, 1993
B.S., Computer Science and Mathematical Sciences, Johns Hopkins University, 1993
Research: Laboratory for Knowledge Discovery in Databases (KDD)—research group emphasizing machine learning and intelligent systems.

Masahii Mizuno

Ph.D., Computer Science, Iowa State University, 1987.
M.S., Computer Science, Pennsylvania State University, 1982.
M.S., Electrical Engineering, Kitami University, Japan, 1980.
B.S., Electrical Engineering, Kitami University, Japan, 1978.
Research and teaching: Operating systems, distributed systems, real-time embedded systems, object-oriented systems.

Mitch Neilson

Ph.D., Kansas State University, Computer Science, 1992
M.S., Kansas State University, Computer Science, 1989
M.S., Kansas State University, Mathematics, 1987
B.S., University of Nebraska-Kearney, Mathematics, 1982
Research: Distributed computing systems, real-time embedded systems, computational engineering, natural resources.
Teaching: Computer architecture, operating systems, networking, real-time systems.
Machine Learning and Bioinformatics (MLB) Group
http://people.cs.ksu.edu/~dcangea/mb

The MLB group aims to design algorithms and develop tools for analyzing large amounts of data, in particular, molecular sequence and gene-expression data. Main projects focus on the following:
- ontology engineering and classifier learning from semantically heterogeneous data sources
- EST data analysis, alternative splicing discovery, and gene prediction
- gene regulatory network discovery from gene-expression data and sequence information

The MLB group is collaborating with the artificial intelligence and machine learning group at Iowa State University to produce an open-source system for knowledge acquisition and information integration from semantically heterogeneous data sources (NSF funding), and with the Bioinformatics Center at Kansas State University to produce bioinformatics and genomics tools (funding from K-State ECoGen and Targeted Excellence Program).

Collaborative Work on Computational Engineering — M. Neilsen
www.kdeproj.info

The United States Department of Agriculture (USDA) and its partners are actively involved in providing the tools and technology for maintaining soils. Through the programs of the USDA, Natural Resources Conservation Service (NRCS), USDA has assisted in the construction of more than 11,000 dams in 47 states since 1948. These dams provide flood control as well as water supply and recreation opportunities. The USDA, Agricultural Research Service (ARS), works closely with the NRCS to develop the technology needed for the economical design and rehabilitation of these dams. Kansas State University is partnering with the USDA to incorporate the results of research and field experience into computational tools for use in design and analysis of dams. These tools provide the basis for optimal use of natural materials such as vegetation to protect embankment spillways. Tools developed or under development through this cooperative work include Sires 2005.1.3—used to evaluate vegetated-earth (both rock and soil) emergency spillways at the watershed scale, (b) WinTR-20—used to route hydrographs through various types of streams and diversions, (c) SNEA+LHS—used to develop probabilistic flow and erosion models for risk management, (d) roadway design tool (WDT)—design vegetated channels in graded waterways, and (e) WinDAM—modules for erosion and breach analysis.

In addition, ongoing collaborative work with the U.S. Army Corps of Engineers in Vicksburg, Miss., develops risk-assessment tools for water-control structures (e.g., Turtle Creek Spillway, 1993 flood), and with Sandia National Laboratories, develops soldier interoperable prediction (SIP) tools to evaluate 99% free solder joints in electronic control packages for satellites, etc.

Distributed Systems Lab

The Distributed Systems Lab supports a wide range of interdisciplinary research around a core interest in efficient, effective distributed systems. Key projects include the K-State research computer networking cluster, BetaCat; enhancing the efficiency of SOAP/XML communications; medical informatics; ecological modeling; and veterinary teledicine. Our work is frequently cross-disciplinary and common collaborators go beyond engineering, ranging from agricultural economics to veterinary medicine. Since 1998, the Distributed Systems Lab has received funding from agencies such as the National Science Foundation, U.S. Food and Drug Administration, U.S. Department of Agriculture, and NSF EPSCoR.

KDD Lab

The Laboratory for Knowledge Discovery in Databases aims at developing technologies for building models of events and processes from data, and then using these models to help make decisions. Technical aspects of this research emphasize the following:
- development of data mining, machine learning, and probabilistic reasoning algorithms that scale up to large data sets
- application of algorithms in software tools for analyzing data from domains such as bioinformatics, epidemiology, medical informatics, and computational physics, and sensors
- models of cognitive processes that lead to a better understanding of how to automate and reason about causality, especially with spatial and temporal data.

The lab has produced the Bayesian Network in Java (BNJ) suite of tools for reasoning with, displaying, and converting among graphical models, spatial classification, and prediction tools for the Kansas Department of Transportation (KDOT), and intelligent search applications for several federal agencies. KDD lab researchers are currently focusing on applications in predictive epidemiology, multidimensional information extraction, social networks, visualization of swarm intelligence and multagent systems, computational genomics (particularly graphical models of gene regulatory dynamics), and proteomics (especially identifying protein-protein interactions). A current
Collaborative Learning Through Real-Time Embedded System Design: NSF REF-DUE (0227709)
Pt: M.L. Nethem, M. Mizuno, G. Singh, D. Lenz, N. Zhang

Rapid advances in embedded systems present significant opportunities for fundamental change in education at all levels, with a greater focus on active, collaborative learning. These advances can be exploited by integrating them into the elementary and middle school curricula, and by having students work in teams to develop innovative new solutions to embedded design problems. This project strives to attract an even more diverse pool of students into education and engineering to design and implement all types of engineered systems. In order to attract such students, we believe that it is important to engage them in the engineering process at an early age.

Consequently, this project recruits 30 upper elementary and middle school teachers to work with researchers on campus at Kansas State University during the summer. In the following academic year, teachers receive ongoing support within their own classrooms. To provide an entry level that is attractive to both upper elementary and middle school teachers, the group is started with the US RétroVisionTM Robotics Invention System, simple object-oriented programming, and simple embedded sensors and actuators. Designing both simple and complex embedded systems naturally motivates both teachers and students to acquire a much deeper understanding of the underlying mathematics and science. Teachers gain practical new skills that can be directly integrated into their own classroom activities. For example, they can use their embedded controllers for data acquisition and analysis in a biology experiment which is both highly motivational and age appropriate for elementary school students. This project involves participation of teachers from both rural and urban areas in Kansas.

The MultiAgent and Cooperative Robotics Laboratory
http://mac.cis.ksu.edu

The MultiAgent and Cooperative Robotics (MACR) Laboratory focuses on applying software engineering methods, techniques, and tools to the design and development of intelligent, complex, adaptive, and autonomous multagent systems. Current research focuses on building the tools and techniques necessary to design and build cooperative robotic systems, where the robots work autonomously, but cooperate as part of a team. This research also includes building and developing hybrid intelligent systems that include humans, software agents, and mobile hardware agents. Key elements of this work are—

- a set of methods and techniques for analyzing and designing complex, adaptive systems.
- a set of organization-based models upon which the system analysis, design, and implementation are based.
- a set of generic technologies that implement the organization-based models.
- a set of multagent and cooperative robotic systems used to demonstrate our approaches.

The lab has produced the organization-based multagent system engineering methodology (O-MaSe) and its associated agent tool development environment. O-MaSe and agent tool support building complex, adaptive systems based on the organizational model for adaptive, complex systems (OMACS) using dynamic models of the problems being solved, which are captured via the goal model for dynamic systems (GMoDS). Research currently focuses on using metrics to predict system performance based on design artifacts. In addition, the MACR Lab is collaborating with the Human-Machine Teaming Laboratory at Vanderbilt University to integrate humans as teammates into cooperative robotics teams. Since 2002, the MACR Lab has received more than $1.6 million in funding from the National Science Foundation, the Air Force Office of Scientific Research, and Stanfield Systems Inc.

Real-Time Embedded Systems Laboratory
http://www.cis.ksu.edu/~external/berthome.html

The Laboratory for research on Embedded Real-Time Systems (CHERT) aims to develop technologies and tools for distributed, fault-tolerant, real-time embedded systems. The focus is on both formal and informal methods for embedded-system development. Our initial target for development was on event-triggered control, where an interactive expert system was developed for finding knowledge using model checking frameworks, the Fusion modeling framework for component-based systems, and the Inca Isolated and analysis and slicing frameworks that are widely recognized within the academic software engineering and verification communities. The CHERT researchers are currently focusing on applications in security, software product lines, integrated medical devices, and sensor networks. Since 1998, the CHERT Laboratory has received more than $8.5 million in funding through agencies and companies such as the National Science Foundation, Department of Defense, and the DARPA, NASA, Lockheed Martin, Rockwell Collins, IBM, Honeywell, and Intel.

The Sensor Networks Laboratory
http://people.cis.ksu.edu/~singh/sensors.htm

The Sensor Networks Laboratory is conducting research to develop new tools and methodologies for the development of sensor applications, and supports multidisciplinary research that draws on faculty expertise from several disciplines. The lab has the following goals:

- develop model-driven tools for designing and deploying large-scale sensor networks.
- provide the infrastructure support necessary to enable K-State researchers to perform multidisciplinary research and address challenges posed by the next generation of sensor systems.
- provide laboratory support in various courses to educate and train students for networking and distributed computing research.

The lab is currently supported by the K-State’s Targeted Excellence Program to promote multidisciplinary research. With additional instrumentation support grants from NSF and DoD, an experimentation test bed has been established to rapidly prototype large-scale sensor applications and to evaluate developed technologies. Multidisciplinary projects in the areas of entrepreneurship, telemedicine, hydrology, grain science, agronomy, and agricultural engineering, and environmental monitoring are being pursued in collaboration with researchers from several departments in engineering, veterinary medicine, agronomy, and agriculture.
PUBLICATIONS

Gould, R. and Unger, E.: Growing the next generation of leaders. Accepted for EDUCAUSE Quarterly.

- Caragea

- Delmouch

Hatchfund

Hsu

Co-PI (with Kevin Chang, David Forynth, Jiawei Han, Chengtian Zhai, University of Illinois at Urbana-Champaign, Aashish Duaa, University of Wisconsin-Madison, Qi Tian, University of Texas at Austin), Department of Homeland Security (DHS), "MIAS: Multimodal Information Access and Synthesis," $30,000, May 2007 – July 2007.

Co-PI (with PI Johanna Schmitt, co-PIs Stephen M. Welch, KSU); Richard Amannis, University of Wisconsin-Madison; Michael Purugganan, National Science Foundation, "Frontiers in Integrative Biological Research (FIBR)," September 2004 – August 2009.

Heilson

Du

Robby

Schmidt

Co-PI (with PI Gary Leavens, University of Central Florida; co-PIs Samak Basu, Iowa State University; Yoonick Chon, University of Texas at El Paso; Curtis Clifton, Rose-Hulman Institute; Cormac Flanagan, University of California at Santa Cruz; David Naumans, Stevens Institute of Technology; Hridesh Rajan, Iowa State University), National Science Foundation (NSF) Computing Research Infrastructure (CRI), "Collaborative Research: CRIC: A M. Community Infrastructure - Revitalizing Tools and Documentation to Aid Formal Methods Research," $895,000, K-Store's portion: $220,000, July 2007 – June 2010.

Singh

Unger

Wallentine

Profile
service/ recognition
Andreas
- Program committee member, IASTED International Conference on Parallel and Distributed Computing and Networks (PDCCN 2008), Innsbruck, Austria, Feb. 12-14, 2008.
- International program committee member, 2008 International Conference on Grid Computing and Applications (GCC@08), Las Vegas, Nev., July 14-17, 2008.
- International program committee member, 2008 International Conference on Semantic Web and Web Services (ISWWS'08), Las Vegas, Nev., July 14-17, 2008.
- International program committee member, 2008 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'08), Las Vegas, Nev., July 14-17, 2008.
- International program committee member, 2008 International Conference on Internet Computing (ICOMP'08), Las Vegas, Nev., July 14-17, 2008.

Banerjee

Carages
- Organizing committee member, ICAI 2007 Workshop on Semantic Web for Collaborative Knowledge Acquisition (SWCAQA) 2007, in conjunction with Twenty-Second International Joint Conference on Artificial Intelligence, Hyderabad, India, January 2007.
- Program committee member, 2007 AAAI Doctoral Consortium Program (DC-07), in conjunction with Twenty-First National Conference on Artificial Intelligence (AAAI 2007), July 2007, Vancouver, B.C., Canada.
- Program committee member, Second International Conference on Computing in the Global Information Technology (ICCGIT'07), March 4-9, 2007, Guadeloupe, French Caribbean.
- Program committee member, Midwest Artificial Intelligence and Cognitive Science Conference (MAiCS'07), DePaul University, April 2007, Chicago, Ill.
- Program committee member, 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Nov. 2-4, 2007, San Jose, Calif.
- Program committee member, 2007 Workshop on Cyberinfrastructure for e-Science (CyNeS 2007) held in conjunction with 2007 IEEE/WIC/ACM Conference on Web Intelligence, November 2007, Fremont, Calif.
- Program committee member, First International Conference on Advances in Semantic Processing (SEMAPRO'07), Nov. 4-9, 2007, Paphos, Greek Polynesia (Tahiti).
- Program committee member, 2006 SIAM Conference on Data Mining (SDM 2006), April 24-26, 2006, Atlanta, Ga.
- Program committee member, 6th International Symposium on Bioinformatics Research and Applications (ISBRA), Atlanta, Ga., May 6-8, 2008.
- Program committee member, 2008 International Conference on BioMedical Engineering and Informatics (BMEI 2008), Suzhou, Hainan, China, May 28-30, 2008.
- Program committee member and special area chair (Bio-Ontologies), International Conference on Bio-computation, Bioinformatics, and Biomedical Technologies (BIOTECHNOLOGY 2008), June 29 – July 5, 2008, Bucharest, Romania.
- Program committee member, 2008 AAAI Doctoral Consortium Program (DC-08) in conjunction with Twenty-Second National Conference on Artificial Intelligence (AAAI 2008), July 2008, Chicago, Ill.
- Program committee member, Third International Conference on Computing in the Global Information Technology (ICCGIT'08), July 27 – Aug. 1, 2008, Athens, Greece.

DeLoach
- Panel member, NSF Robust Intelligence.
- Program committee member, International Workshop on Agent-Oriented Software Engineering (AOSE), May 14-18, 2007, Honolulu, Hawaii.

Hatecliff
- Program committee member, 2007 ACM Symposium on Principles of Programming Languages (POPL 2007).
- Program committee member, 2008 ACM Workshop on Partial Evaluation and Program Manipulation (PEPM).

Hsu
- Editorial board member, Intelligent Data Analysis (IDA) Conference Program Committees.
- Program committee member, International Conference of the Association for the Advancement of Artificial Intelligence, March 2007.

Hullman
- PCDS 2007 Reviewer and Session Chair.
- EMS 2007 Session Chair.

Isbister

Kobay
- Program committee member, Static Analysis Symposium II (SASL 2007).
- Program committee member, Generative Programming and Component Engineering (GPCE 2007).
- Program committee member, 1st International Workshop on Verification and Analysis of Multi-threaded Java-like Programs (VAMP 2007).
- Program committee member, 10th International Conference on Fundamental Approaches to Software Engineering (FASE 2007).

Kuhn
- Co-chair, "Thirty Years of Abstract Interpretation" workshop, Jan. 9, San Francisco, Calif. (http://30yai.dai.univ.tr/).
- Program committee member, 14th International Static Analysis Symposium, Kongens Lyngby, Denmark, Aug. 22-24, 2007 (http://www.imm.dtu.dk/sas2007/).
- Steering committee member, Static Analysis Symposium, Conference on Verification, Model Checking, and Abstract Interpretation.
- Advisory board member, Journal of Higher-Order and Symbolic Computation.

Sinha

Wallenstein
- Member, U.S. Senate Perth Roberts Committee on Information Technology.
- Board of directors member, Software and Information Technology Association of Kansas (SITAK).
Undergraduate Studies

The CIS department offers two B.S. degrees: one in information systems (IS) and one in computer science (CS). The CS degree program now has two options:
- A traditional computer science track, which focuses on foundational and scientific issues, including courses on operating systems and databases; and
- A software engineering track, which focuses on software development, including enterprise information systems, project management, software security, parallel programming, and software development in a team environment.

Both degree programs allow students flexibility in their programs of study. Students are encouraged to pursue a minor or to study interdisciplinary subjects while still completing their degrees within four years.

Computer science requirements for each of the three options have a core consisting of 16 credit hours and an option-specific set of 17 hours of advanced courses. The 16 credit-hour core also serves as the minor in computer science.

ACM Student Chapter
The local ACM chapter is a professional organization for CIS majors. Average attendance at monthly meetings is 30-40 students. Typically more than a dozen attend the ACM regional programming contest for a chance to interact with their peers and develop professional skills.

AAAI Robotics Competition
The joint undergraduate and graduate robotics team prepares to participate in robotics events at the annual convention of the Association for the Advancement of Artificial Intelligence. The team has competed each of the last five years in this event, a popular project for both undergraduate and graduate students.

Graduate Studies

The department of computing and information sciences is committed to excellence in scholarly activities in research and graduate teaching. We offer courses and a rich variety of projects in the areas of programming languages, high-assurance software, distributed computing, networking, software engineering, bio-informatics, computer security, and data mining. In addition to basic research, our curriculum emphasizes collaborative and interdisciplinary research, collaboration with industrial partners, and development and distribution of software tools. We offer two master’s-level degrees, the master of science (M.S.) and master of software engineering (M.S.E.), and the doctor of philosophy degree in computer science. We offer the M.S.E. degree via distance learning, and a graduate certificate program in real-time embedded systems in collaboration with other engineering departments.

Admission requirements
Applicants for our graduate degrees must possess a bachelor’s degree, with at least a 3.0 grade point average or equivalent, from an accredited institution. Students not possessing a degree in computer science must have background that includes the equivalent of core undergraduate computer science courses.

Areas of concentration
- Programming language, high-assurance software, distributed computing, networking, software engineering, bio-informatics, computer security, and data mining.

Certificate program
- Graduate certificate in real-time embedded systems.

Resources for current and prospective graduate students
- CIS Admissions: http://cis.ku.edu/programs/gradadmissions
- CIS research projects: http://cis.ku.edu/research
- CIS profile on Peterson’s Online Guide: http://cis.ku.edu/AnnualReport

How to apply
For a graduate application and other information, contact:

Graduate Studies
Department of Computing and Information Sciences
234 Nichols Hall
Kansas State University
Manhattan, KS 66506 USA
Phone: 785-532-6350; Fax: 785-532-7353;
email: cis-gradapp@ksu.edu
The CIS advisory board is composed of leaders in the development and deployment of software in industry. Because software is pervasive throughout our society, these advisors are technical, management, and executive leaders in a broad spectrum of industrial sectors — software development, e-commerce, health IT, transportation, manufacturing, retail, communications, wealth management, military, and academic. This industrial leadership helps us in three ways:

- Through industrial and university affiliations, it connects us to our alumni, practicing professionals, industry leaders, government leaders, and academic researchers. These connections enable us to build collaborative relationships between academia and industry.
- It provides advice on the "state of the practice" in the software industry. This perspective helps us better prepare students for the software development profession, and better integrate our research results into real products and industrial processes.
- Advisory board members provide financial support from both personal and industry sources.

William Cory
President and CEO
Innovation Corporation

Susan Chambers
Senior Vice President, Benefits/Insurance Admin.
Wal-Mart

Katherine (Kacy) Clark
Vice President
Wellington Management Company

Terry Ecklund
Partner
Accenture

Lynn Frick
Database Administrator
Kansas State University Foundation

Dominic Gelinas
Programmer
Texas Instruments

Dr. Mary Lou Hines
Vice Provost
UMMC (Board Chair)

Connie Jaynes
Retired
Shell Oil

Martin Malley
Vice President of Information Technology
Union Pacific

Don Mounday
President
Falcon Technology Group

Shane Runquist
Software Engineer
Garmin

Mark Schonhoff
Vice President
Cerner Corp.

Ken Switzer
President
Pegasus Programming Solutions

Norman Tsiguloff
President
MileHigh Sir Speedy

Neil Tucker
Retired
PeopleSoft

Dr. Ray Vaught
Professor, Computer Science and Engineering
Director, Center for Computer Security Research
Mississippi State University

Dr. Tieren Zhou
Founder and President
Techneos Corp.

Emeritus Members

Jerry Havemann
Vice President, Retired
Cargill

Jacqueline Trombly
Operations Director, Retired
Lucent Inc.

Dennis Yeo
Founder
Multigen/Paradigm

Wallentine, Virgil
Dept. Head/Professor (785) 532-7774
Nichols 234
vrg@ksu.edu

Amtoff, Torben
Assistant Professor (785) 532-7917
Nichols 219C
tamtoff@ksu.edu

Andersen, Dan
Associate Professor (785) 532-7914
Nichols 219B
dan@ksu.edu

Banerjee, Anindya
Associate Professor (785) 532-7944
Nichols 324B
avanerje@ksu.edu

Caragea, Doina
Assistant Professor (785) 532-7908
Nichols 227C
dcaragea@ksu.edu

DeLoach, Scott
Associate Professor (785) 532-7951
Nichols 326E
dealoach@ksu.edu

Gustafson, Dave A.
Professor (785) 532-7923
Nichols 227A
dag@ksu.edu

Hatchliff, John
Professor (785) 532-7950
Nichols 324D
hatchliff@ksu.edu

Howell, Rodney R.
Associate Professor (785) 532-7735
Nichols 227D
howellr@ksu.edu

Hsu, William
Associate Professor (785) 532-7905
Nichols 213
whsu@ksu.edu

Mizuno, Masaki
Professor (785) 532-7928
Nichols 227B
masaki@ksu.edu

Nelson, Mitchell L.
Associate Professor (785) 532-7918
Nichols 219D
nelson@ksu.edu

Ximming (Simon) Ou
Assistant Professor (785) 532-7941
Nichols 316B
oxou@ksu.edu

Robby
Assistant Professor (785) 532-7904
Nichols 316A
robbir@ksu.edu

Schmidt, David A.
Professor (785) 532-7912
Nichols 219A
das@ksu.edu

Singh, Gurdip
Professor (785) 532-7945
Nichols 324C
gurdip@ksu.edu

Stoughton, Alley
Associate Professor (785) 532-7906
Nichols 214
stougha@ksu.edu

Unger, Elizabeth A.
Professor (785) 532-6521
Hale 218A
beth@ksu.edu

K-State Notice of Nondiscrimination

Kansas State University is committed to nondiscrimination on the basis of race, color, ethnic or national origin, sex, sexual orientation, gender identity, religion, age, ancestry, disability, military status, veteran status, or other non-merit factors, in admissions, educational programs or activities and employment, including employment of disabled veterans and veterans of the Vietnam Era, as required by applicable laws and regulations. Responsibility for coordination of compliance efforts and receipt of inquiries concerning Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, the Age Discrimination Act of 1975, and the Americans With Disabilities Act of 1990, has been delegated to the Director of Affirmative Action, Kansas State University, 214 Anderson Hall, Manhattan, KS 66506-0324, (Phone) 785-532-4220, (FAX) 785-532-4407, Ext 6042/928, E-mail: 49015@k-state.edu