Appendix 4

Teaching Assignments

Calendar Year 1989 Faculty and Graduate Teaching Assistant Assignments

I. Faculty Assignments and GTA Graders

A. Professor, Associate Professor, and Assistant Professor

<table>
<thead>
<tr>
<th>Teaching Assignment</th>
<th>Graduate Teaching Assistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virg Wallentine</td>
<td>Jim Butler</td>
</tr>
<tr>
<td>CMPSC 690</td>
<td></td>
</tr>
<tr>
<td>CMPSC 690</td>
<td>Qian Huang (spring)</td>
</tr>
<tr>
<td>Bill Hankley</td>
<td>Raghavendra Rao (fall)</td>
</tr>
<tr>
<td>CMPSC 505(2)</td>
<td></td>
</tr>
<tr>
<td>CMPSC 636</td>
<td></td>
</tr>
<tr>
<td>CMPSC 671</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Unger</td>
<td>Dennis Ng</td>
</tr>
<tr>
<td>CMPSC 560(2)</td>
<td>Sheela Ramanna</td>
</tr>
<tr>
<td>CMPSC 990</td>
<td></td>
</tr>
<tr>
<td>CMPSC 761</td>
<td></td>
</tr>
<tr>
<td>CMPSC 762</td>
<td></td>
</tr>
<tr>
<td>Myron Calhoun</td>
<td>Doug Varney (spring)</td>
</tr>
<tr>
<td>CMPSC 305</td>
<td>Peikun Tsai</td>
</tr>
<tr>
<td>CMPSC 362</td>
<td>Ramesh Tiwari</td>
</tr>
<tr>
<td>CMPSC 580</td>
<td></td>
</tr>
<tr>
<td>David Gustafson</td>
<td>Richard Courtney</td>
</tr>
<tr>
<td>CMPSC 541</td>
<td>Kyung He An (spring)</td>
</tr>
<tr>
<td>CMPSC 740</td>
<td>Eric Byrne</td>
</tr>
<tr>
<td>CMPSC 940</td>
<td></td>
</tr>
<tr>
<td>CMPSC 535</td>
<td></td>
</tr>
<tr>
<td>CMPSC 540</td>
<td></td>
</tr>
<tr>
<td>Dave Schmidt</td>
<td>Kyung Doh</td>
</tr>
<tr>
<td>CMPSC 806</td>
<td>Pascal Fradet</td>
</tr>
<tr>
<td>CMPSC 990</td>
<td></td>
</tr>
<tr>
<td>CMPSC 700</td>
<td></td>
</tr>
<tr>
<td>CMPSC 705</td>
<td></td>
</tr>
<tr>
<td>Maarten vanSwaay</td>
<td>Tom Supawarnnapong (spring)</td>
</tr>
<tr>
<td>CMPSC 307</td>
<td>Ganesan Sundar (spring)</td>
</tr>
<tr>
<td>CMPSC 492</td>
<td>A. Banerjee (fall)</td>
</tr>
<tr>
<td>CMPSC 520</td>
<td>Kasinath Vemulapalli (fall)</td>
</tr>
<tr>
<td>CMPSC 500(2)</td>
<td></td>
</tr>
<tr>
<td>CMPSC 520</td>
<td></td>
</tr>
<tr>
<td>CMPSC 520</td>
<td></td>
</tr>
<tr>
<td>Maria Bleyberg</td>
<td>Rizwan Mithani (spring)</td>
</tr>
<tr>
<td>CMPSC 730</td>
<td>Cindy Cook (fall)</td>
</tr>
<tr>
<td>CMPSC 630</td>
<td></td>
</tr>
<tr>
<td>Rodney Howell</td>
<td>Adrian Fiech</td>
</tr>
<tr>
<td>CMPSC 675</td>
<td></td>
</tr>
<tr>
<td>CMPSC 990</td>
<td></td>
</tr>
<tr>
<td>CMPSC 770</td>
<td></td>
</tr>
<tr>
<td>Masaaki Mizuno</td>
<td>Sudeep Dharan (spring)</td>
</tr>
<tr>
<td>CMPSC 620</td>
<td></td>
</tr>
<tr>
<td>CMPSC 920</td>
<td></td>
</tr>
<tr>
<td>CMPSC 725</td>
<td></td>
</tr>
<tr>
<td>K. Ravindran</td>
<td>S. Ramakrishnan (grant)</td>
</tr>
<tr>
<td>CMPSC 825</td>
<td></td>
</tr>
</tbody>
</table>
B. Instructor and Instructor-Temp.

<table>
<thead>
<tr>
<th>Teaching Assignment</th>
<th>Graduate Teaching Assistant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring 1989</td>
<td>Fall 1989</td>
</tr>
<tr>
<td>Joseph Campbell</td>
<td></td>
</tr>
<tr>
<td>CMPSC 567</td>
<td>CMPSC 562</td>
</tr>
<tr>
<td>CMPSC 897</td>
<td>CMPSC 897</td>
</tr>
<tr>
<td>Charles Kichler</td>
<td></td>
</tr>
<tr>
<td>CMPSC 110</td>
<td>CMPSC 110</td>
</tr>
<tr>
<td>James Peters</td>
<td></td>
</tr>
<tr>
<td>CMPSC 370</td>
<td>CMPSC 200</td>
</tr>
<tr>
<td>CMPSC 591</td>
<td>Li Fang Hsieh (spring)</td>
</tr>
<tr>
<td>Clark Sexton</td>
<td></td>
</tr>
<tr>
<td>CMPSC 200</td>
<td>CMPSC 200</td>
</tr>
<tr>
<td></td>
<td>Eric Fong (fall)</td>
</tr>
<tr>
<td></td>
<td>Mini Supercomputer Admin</td>
</tr>
</tbody>
</table>

II. GTA Assigned as Classroom Teachers

<table>
<thead>
<tr>
<th>Name</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg Knittel</td>
<td>CMPSC 110 (spring)</td>
</tr>
<tr>
<td>Kiang Pang</td>
<td>CMPSC 110</td>
</tr>
<tr>
<td>Jim Slack</td>
<td>CMPSC 200</td>
</tr>
<tr>
<td>David Balda</td>
<td>CMPSC 206 (spring)</td>
</tr>
<tr>
<td>Gary Wade</td>
<td>CMPSC 206 (spring)</td>
</tr>
<tr>
<td>Charles Black</td>
<td>CMPSC 206 (fall)</td>
</tr>
<tr>
<td>Ka Wing Wong</td>
<td>CMPSC 207</td>
</tr>
<tr>
<td>Hossein Saiedian</td>
<td>CMPSC 211 (spring)</td>
</tr>
<tr>
<td>Stan Robben</td>
<td>CMPSC 211 (spring)</td>
</tr>
<tr>
<td>Abdul Kasim</td>
<td>CMPSC 211 (fall)</td>
</tr>
<tr>
<td>Kevin Lynn</td>
<td>CMPSC 211 (fall)</td>
</tr>
<tr>
<td>Mohammad Paryavi</td>
<td>CMPSC 300</td>
</tr>
<tr>
<td>Mitchell Neilsen</td>
<td>CMPSC 370 (fall)</td>
</tr>
<tr>
<td>Paul Connelly</td>
<td>CMPSC 490 (fall)</td>
</tr>
</tbody>
</table>

III. Miscellaneous GTA Assignments

<table>
<thead>
<tr>
<th>Name</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Balda</td>
<td>(fall, grd 20X)</td>
</tr>
<tr>
<td>Kok Hui Chong</td>
<td>(spring, grd 20X)</td>
</tr>
<tr>
<td>Don Hager</td>
<td>(spring, systems)</td>
</tr>
<tr>
<td>Steve Hansen</td>
<td>(coordinate 20X)</td>
</tr>
<tr>
<td>Abdul Kasim</td>
<td>(spring, grd 20X)</td>
</tr>
<tr>
<td>Janaki Krishnaswamy</td>
<td>(grd 110)</td>
</tr>
<tr>
<td>David Liu</td>
<td>(fall, grd 20X)M.</td>
</tr>
<tr>
<td>James Peters</td>
<td>(fall, grd 300)</td>
</tr>
<tr>
<td>Raghavendra Rao</td>
<td>(spring, systems)</td>
</tr>
<tr>
<td>S. Sandarshi</td>
<td>(fall, grd 110)</td>
</tr>
<tr>
<td>M. Venkatrao</td>
<td>(fall, grd 110)</td>
</tr>
<tr>
<td>Jeff Brogden</td>
<td>(fall, systems)</td>
</tr>
<tr>
<td>Eric Fong</td>
<td>(fall, grd 207)</td>
</tr>
<tr>
<td>Amit Halder</td>
<td>(grd 110)</td>
</tr>
<tr>
<td>JR Hockersmith</td>
<td>(fall, systems)</td>
</tr>
<tr>
<td>Greg Knittel</td>
<td>(fall, grd 110)</td>
</tr>
<tr>
<td>Chris Li</td>
<td>(spring, systems)</td>
</tr>
<tr>
<td>Nelakonda</td>
<td>(fall, grd 110)</td>
</tr>
<tr>
<td>Peter Prakash</td>
<td>(spring, grd 110; fall systems)</td>
</tr>
<tr>
<td>Paul Root</td>
<td>(spring, systems)</td>
</tr>
<tr>
<td>Kole Scarbrough</td>
<td>(spring, grd 725)</td>
</tr>
<tr>
<td>Kevin Weinhold</td>
<td>(spring, grd 110)</td>
</tr>
</tbody>
</table>
Appendix 5

Committee Service

Maria Zamfir-Bleyberg
Recruiting Committee

Myron Calhoun
The "Service Courses" subcommittee of the "Undergraduate Studies" committee.

David Gustafson
Seminar committee
Undergraduate Studies
Faculty Evaluation
Faculty Search

William Hankley
Graduate Studies Committee
converting databases to Mac Excel screening of applicants manage prelim exams
Undergraduate Studies Committee
manage 2 yr curriculum & catalog changes College Laboratory Committee manage Mac lab spec & purchases

Rod Howell
Seminar Series Committee
Undergraduate Studies Committee - in charge of CIS 370 (570).

Austin Melton
None

Masaaki Mizuno
Faculty Recruiting Committee
Computing Facilities

K. Ravidran
None

David Schmidt
Graduate Studies Committee

Elizabeth Unger
A & S Deans Advisory Committee
Undergraduate Studies, Chair until August
Chair, Search Committee for KSU Vice Provost
Maarten van Swaay

UG curriculum

Virgil Wallentine

CIS Department
 - Chair, Recruiting Committee
 - Chair, Computing Facilities
 - Faculty Evaluation
 - Graduate Studies
A&S College
 - Chair, College Committee on Planning
 - Faculty Evaluation
 - Chair, General Laboratory Committee
KSU
 - Academic Computing Advisory Committee
 -- Subcommittees
 --- Co-chair, Ethics
 --- Planning
 --- Networking
 - Telecommunications
 -- Executive Council
Appendix 6
PUBLICATIONS

Accepted for Publication

Bleyberg, M., "AND/OR Algebraic Theories" (draft paper) presented at the 5th Workshop on the Mathematical Foundations of Programming Languages Semantics, Tulane University, March 1989.

Even, S. and D. Schmidt. "Category-Sorted Algebra Based Action Semantics" Report TR-CS-89-9 Accepted by TCS as noted above.

Ramanna, S., Peters, J., and E. Unger, "Logic of Knowledge and Belief in The Design of a Distributed Integrity Kernel," Parabase-90 International Conference on Database, Parallel Architectures and their applications, 1990. Acceptance Rate 31%

Submissions

Howell, R., Rosier, L., and H. Yen, "Global and Local Views of State Fairness" accepted for publication in Theoretical Computer Science.

Huang, Q., and D. Gustafson, "Evaluation of Data Flow Diagrams based on Fuzzy Sets". Submitted to the ACM South Central Regional Conference.

Mizuno, M., and M. Neilsen, "A Dag-Based Algorithm for Distributed Mutual Exclusion", submitted to ACM TOCS.

Ranft, S., and D. Gustafson, "Evaluating Projects with the Software Process Model". Submitted to CompSac 90.

In Progress

Al-Ali, K., and David A. Gustafson, "A Mathematical Foundation for Testability".

Butler, J. and V. Wallentine, "Vignettes: A Visual Queuing Network Simulation Language".

Gustafson, D., Al-Ali, K., An, K., Byrne, E., and A. Haycock, "Testing Strategies based on Reduced Paths".

Gustafson, D., "A Philosophy and Goals for Software Measurement".

Gustafson, D., CIS TR 89-02 is "A Critique of Validation/Verification Techniques for Software Development Measures"

Huang, Q., and David A. Gustafson, "A Formal Notation for Data Flow Diagrams".

Melton, A., and S. Shenoi. "The Role of Contexts in Abstract Information Storage and Retrieval".

Mizuno, M. and A. Oldehoeft, "Information Flow Control for modular programming systems", preparing for the second submission to ACM TOPLAS (or some other journal).

Appendix 7

Grants/Proposal

Awarded/Active

Maria Zambir-Bleyberg

National Science Foundation Grant ($281,000) funded for "ANALYTICAL DIRECTOR - An Artificial Intelligence/Robotic Expert System for the Analytical Laboratory", with Professor Isehnour (principal investigator).

A KSU CRCRA ($20,000) grant to purchase KEE and develop an object-oriented database prototype based on my theoretical results.

A KSU CRCRA ($6,000) grant to investigate concurrency control in database systems.

A KSU CRCRA ($1,200) grant to take a course on neural nets at UCLA extension.

David Gustafson and Austin Melton

NATO Travel Grant 0343/88 ($6,000) "Formal Foundations of Software Measurement". NATO Collaborative Research Grant 034/88 expired this year. Applied for a one year extension for travel to two research meetings for the Grubstake Group.

Austin Melton

ONR Grant N00014-88-K-0455 running through Sept 91 ($225,963)

Masaaki Mizuno

The Center for Research and Computer Controlled Automation #FY89N003, funded for Summer, 1989. ($346)

The Center for Research and Computer Controlled Automation #90NO18, with Dr. K. Ravindran. ($8,484.00)

Listed as a senior associate in proposal "Semantics-Driven Compiler Synthesis" (NFS May 1, 1989 - April 30, 1991) by Dr. David A. Schmidt.

K. Ravindran

Obtained seed funding from "CRCRA" for research on multiscrvice ISDN’s. ($8,484.00)

David Schmidt

‘Semantics-Directed Compiler Synthesis’, NSF, $158,000, 2 years.

Virgil Wallentine

‘AT&T Summer-on-Campus’ Graduate Program ($162,864).

SCS-40 Super mini-computer to support Parallel Computing Research ($700,000).
Pending

K. Ravindran

‘A Data-Driven Communications Architecture for Distributed Operating Systems’, $70,000, NSF.

Elizabeth Unger

NCSC Data Security Grant ranked to #2 behind Carnegie-Mellon Talked to them Dec 20 and they still think we will be funded in early 1990. They had appropriations pulled from their grant program so no grants have been funded since October.
Appendix 8

Current Research Programs of the CIS Faculty

Research in this department can be categorized in five basic areas - programming languages, software engineering, knowledge engineering, database systems, and parallel and distributed systems. In this section we list the current specific research projects of the CIS faculty.

Maria Zamfir, Ph.D., UCLA. Her research interests include different but interacting areas: the initial algebra semantics of parallel distributed computing, neural networks, and formal semantic models for the design of databases and knowledge-based systems.

In the area of parallel computing, her goal is to develop a language for writing and testing formal specifications of parallel distributed systems based on the AND/OR net model. The AND/OR net model is an initial algebra semantics model for concurrent computing systems, which I have been working at for the past few years. I have also been examining Petri nets as object-oriented systems in which abstract data types provide values for attributes. I have been using this view of Petri nets to define an abstract operational semantics for them based on "reflection". Finally, I hope that the study of neural networks will open new directions in my research in the area of parallel computing.

Regarding databases and knowledge-based systems, she is interested in building practical systems with appropriate logical foundations. At present, she is involved in the design and implementation of an expert system that can design and simulate an analytical chemistry procedure and controls the robot during the procedure execution. Regarding databases, she has been working at the implementation of an object-oriented database. This implementation is based on a formal categorical model of databases, which I have developed.

Myron A. Calhoun, Ph.D., Arizona State. Trying to delve deeply into the uses of Finite Inductive Sequences (FIS) as described by Fisher & Case. FIS appears to be directly applicable to the compression of textual data as well as compressing, processing, and recognizing visual images; this latter may also include applications in mobile free-ranging robotics. His ongoing (but now mostly background) research emphasizes the application of computers to real-world problems such as the development of computer interfaces for the handicapped and low-cost packet-radio networks.

David A. Gustafson, Ph.D., Wisconsin-Madison. His research interests are in the area of software engineering. He is formalizing the theory of software measures so that it becomes obvious what is being measured and what properties the measure has. He is also doing research into the problems of validating software measures. Another area of research is software reliability. He is currently investigating models of the software structure that can be used to develop a software reliability model. Related to the area of reliability is the area of software testing methods. He is developing more thorough test methods that have formal bases. Another area in which he is involved is the area of formal notations for diagrams, both data flow diagrams and hierarchy diagrams. The creation of better notations will allow more formal work on transformations of the diagrams. Finally, he is working on developing notations for describing the software development process in terms of the documents that are produced.

Rodney Howell, PhD, University of Texas at Austin. His research interests lie mainly in three areas: real-time scheduling, self-stabilization, and Petri nets. In the area of real-time scheduling, he has been looking at the complexity of finding valid schedules for various types of periodic real-time systems. In many cases, the problems turn out to be NP-hard. His goal is to identify as many situations as possible in which schedules can be constructed efficiently. Regarding self-stabilization, he is interested in examining various theoretical limitations for self-stabilizing systems. For example, he has
recently explored situations in which certain types of models cannot simulate other types of models while preserving self-stabilization. Finally, in the area of Petri nets, he has been examining the computational complexity of various problems, such as reachability, boundedness, equivalence, liveness, and fair nontermination, for different classes of Petri nets. His main goal in this area of research is to tighten the known bounds on the complexity of the reachability problem for Petri nets.

William J. Hankley, Ph.D., Ohio State University. His research centers on formal specification of programs. Writing formal specifications is a kind of programming; it is the use of very high level non-procedural languages. The research focus is on object-oriented and modular structure (using ADA concepts), high level data types (sets, maps, sequences as in VDM), logic specifications (predicate calculus and Prolog notations), and temporal description of task behaviors (temporal logic). Related work includes formal verification of specified system properties, development of executable specifications as program prototypes, and use of direct manipulation interfaces for rapid development of prototypes.

Austin Melton, Ph.D., Kansas State University. His research interests include programming semantics, software engineering, and nonnormal form relational databases. In programming semantics he is interested in using category theory to understand and explain programming semantics, and further he is interested in seeing how category theory itself can be used as a programming language. In software engineering he works with software measures or metrics. His work involves trying to develop a foundation upon which one can with confidence design and define useful software measures. In databases he is working to define a general method for defining and studying non-normal forms structures.

Masaaki Mizuno, Ph.D., Iowa State University. Research interests are in computer security and various aspects of distributed systems. He has worked on an information flow control mechanism for modular programming systems. He also works with Dr. David A. Schmidt on theoretical aspects of information flow by applying methodology in programming semantics. In his research in distributed systems, he and his students have developed efficient distributed mutual exclusion algorithms and distributed AND-synchronization algorithms. Currently, his group is studying concurrency control and recovery issues of transaction based distributed database systems.

K. Ravindran, Ph.D., British Columbia. Currently pursuing research on distributed systems architectures and high speed packet networks. Specific areas being investigated are: (i) Data-driven communication in distributed operating systems to allow fine-grained reconfigurability of services and fine-grained parallelism among functions that compose a server; (ii) Design of a flexible communication kernel for distributed applications whereby different applications may choose different forms of communication mechanisms to suit their requirements; (iii) Network architectures and protocols to handle congestion control, bandwidth management and packet multicasting in high speed packet switching.

David Schmidt, Ph.D., Pursuing research on the theory of programming languages as it is expressed within denotational semantics. He uses denotational semantics to analyze the structure of programming languages and to implement them. In past research, he has shown how to synthesize efficient implementation data structures for languages defined by denotational semantics. He and a research student are building a "rapid prototyping," compiler synthesis system based on these ideas. Recently, he has studied the category-theoretic foundations of languages with polymorphic operators within a denotational semantics variant called "action semantics." He and a student have developed a sound and complete type inference algorithm for action semantics; the algorithm is being implemented as part of a programming language analysis "workbench."

Elizabeth Unger, Ph.D., University of Kansas. The entire thrust of her research program is in the development of security and integrity systems based upon the object oriented programming paradigm. The
work proceeds with two foci: description of the general inference problem and characterization of the database administrator and user level integrity constraints. The first thrust includes the completion and documentation of the value of natural change for deterrent value on the tracker attacks; the mathematical and statistical characterization of the security value of such change; the security value of change in conjunction with other deterrent methods; the characterization of information increment given a user data increment. This latter characterization is just beginning with Shannon's concept of entropy as the basis for measurement. Such a measure will allow the use of a semantic model to characterize statistically the security risk of releasing data in certain risk environments. The second thrust is concerned with the formal description of one aspect of user level integrity, the temporality. In this thrust, a next step is the clear definition of user level integrity, the specification of a language in which to specify contraints (to be used in the security project also) and the definition of the architecture of such a system within contemporary operating systems.

Maarten van Swaay, Ph.D., Leiden (Netherlands). Interests in laboratory instrumentation and in neural network systems. He has written a chapter on laboratory computing for a handbook on chemical instrumentation; the book is scheduled for publication in March 1990. In addition to technical areas Dr. van Swaay has a strong interest in social and ethical issues of computing, and has developed a course in that area in our department.

Virgil Wallentine, Ph.D., Iowa State University. Research includes distributed systems and their applications. More specifically, his work centers on what can be distributed, how it can be distributed across multiple processing units, and what properties of the system make it amenable to distribution. Presently, he is working in the area of Parallel and Distributed Discrete Event Simulation and in methods for debugging distributed programs. Several specific projects are on-going including the construction of a system which supports a visual programming facility for queueing networks, a performance prediction environment for DDES, and a knowledge-based debugging system for distributed programs.
Appendix 9

Professional Service

Maria Zamfir-Bleyberg

Refereeing for TCS (AMAST special issue):
"Higher-Order Polymorphic Equational Deduction with Function Constraints" by Zhenyu Qian

Refereeing for IEEE, TSE:
"Deriving Temporal Logic Formulae from Predicate Transition Nets" by X. He and J. A. N. Lee.

Refereeing for NSF (Division of Information, Robotics, and Intelligent Systems):
"Grammar and Relations" by Leo Mark.

Reviewing for AMAST:
"Constructor Models as Abstract Data Types (ADTs)" by Hantao Zhang
"An Extension to the Algebraic Specification Mechanism for ADTs by Hassan Mathkour
"An Algebraic Approach for Knowledge Integration" by Z. Chen
"Algebraic Structure of Petri Nets and Nondeterminism" by David B. Benson, Raju R. Iyer
"OBJSA Nets: OBJ2 and Petri nets for Specifying Concurrent Systems" by E. Battiston, F. DeCindio, G. Mauri
"Algebraic Specifications of ADTs and the Assessment of Ultra-Reliability" by Keith Miller, Robert Noonan, Steve Park
"An Algebraic Structure for Development of AI Systems" by Rong Lin
"An Image Processing Software Development: A Polynomial Algebra Approach" by Prabir Bhattacharya, Kai Qian
"An Example of IDAL Specifications" by Magne Haveraaen
"Formal Semantics of Two-tiered Specifications" by David Guaspari
"The Verification of Algebraically Specified Abstract Data Types using Higher-Order logic" by Philip J. Windley

Myron Calhoun

Chairman of the "PC Applications for Developing Nations" sub-committee of TC/PC, the IEEE Technical Committee on Personal Computers.

David Gustafson

Refereed for the following:
IEEE Software - special issue on SLC Measures
IEEE Software - special issue on Software Maintenance
Conf on Software Maintenance 1989
ACM South Central Regional Conference
Hawaii Inter Conf on System Sciences
William Hankley
Reviewer for ACM Computing Reviews
Reviewer for Hawaii System Sciences Conference
Reviewer for IEEE Trans Soft Engr

Rod Howell
Refereed for Real-Time Systems and Fundamenta Informaticae.

Austin Melton
Referee for:
 IEEE Software Engineering Journal
 Mathematical Foundation of Programming Semantics Workshop

Masaaki Mizuno
Referee for:
 IEEE Computer
 ACM Symposium on Personal and Small Computers

K. Ravidran
Refereed papers for:
 IEEE Computer
 IEEE Trans on Computers
 IEEE Conference on Fault-Tolerant Computing

David Schmidt
Refereeing:
 Algebraic Methodology Conf.
 ACM TOPLAS
 Intl. J. of Parallel Programming
 1989 IFIP World Computer Congress
 NSF
 Tenure review for NC Charlotte
 Theoretical Computer Science

Elizabeth Unger
Reviewer for:
 ACM CSE 1989
 ACM CSC 1989
 ACM Sigsmall/PC 1990
 ACM/IEEE WAC 1989 1990 and session chair
 ACM/IEEE South Central Regional Conference and session chair
 Scott Foresman
 ACM Computing Reviews
 Addison Wesley
 Times Mirror Mosby
 Little Brown
 Prentice Hall
Appendix 10
Faculty Presentations

Maria Zamfir-Bleyberg

Myron Calhoun None

David Gustafson

None

William Hankley

None

Rod Howell

I gave a presentation, "System Simulation and the Sensitivity of Self-Stabilization," as a colloquium here, October 26, 1989, and as an invited talk at Iowa State University, November 9, 1989.

Austin Melton

University of Tulsa in February ("Software Measures")
University of Darmstadt in July ("Eine Kategorie von Galois-Verbindungen")
University of Aarhus, Denmark in November ("A New Connection").

Masaaki Mizuno

Department research seminar "Distributed mutual exclusion algorithms", 11/30/89

K. Ravindran

None

David Schmidt

Algebraic Methodology and Software Technology Conf., Iowa City, May
INRIA, Rocquencourt, June
Univ. of Rennes/IRISA, France, June
University of Copenhagen, June
Univ. of Glasgow, July
Univ. of Edinburgh, July
Colorado State Univ., Nov
Oregon Graduate Institute, Beaverton, OR, Nov
Tektronix Labs, Beaverton, OR, Nov

Elizabeth Unger

INTERFACE between Computing and Statistics given in Orlando Florida in April on the Information Disclosure Problem and its relationship to the Data Aggregation Problem.
Research Seminar given to the Department of Computer Science at University or Missouri at Kansas City on the Data Aggregation Problem.

Invited Address to INTERFACE Conference April 1989.

Maarten van Swaay

Ethical Computing, DECUS.

Virgil Wallentine

"Computing Research at KSU" at Silicon Prairie Assn, Kansas City, KS.
"Essential 8 Departments in Arts & Sciences", Arts & Sciences seminars.
"Computer Viruses", Scholarship Day.
Consultant: Louisiana Board of Regents on Computer Education in the entire school system in Louisiana

Maarten van Swaay

Applied Computing Workshop
DECUS Natl Symposium

Virgil Wallentine

Refereed for:
IEEE Software
ACM SIGSMALL/PC 1990
Scott Foresman
ACM/IEEE WAC 1990